Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

CSE

16/10/2020

CONTINUOUS INTERNAL EVALUATION- 1

Dept: CSE	Sem / Div: 5th A and B	Sub: Automata Theory and Computability	S Code: 18CS54
Date: 20/10/2020	Time: 2:30 - 4:00 PM	Max Marks: 50	Elective: N

Q N	Questions	Marks	RBT	COs
	PART A			
1 a Explain with example, i. Alphabet ii. Language iii. Functions on string		4	L2	COI
	Define a Moore Machine and a Mealy Machine. Give an example or each.	5	L2	COI
 c Design a DFSM for the following languages. i. L = { w ∈ {a, b}*: where w mod 3 < w mod 2 }. Write configurations for "baabab" ii. L={w ∈ {a, b}*: w contains an odd number of a's and an odd number of b's}. Write the configurations for "aabbab" 		8	L3	COI
dΙ	Design a NDFSM for the following languages: i. L={ ab, abc}* ii. L={ abab ⁿ n>=0} or { aba ⁿ n>=0}	8	L3	COI
) o T	OR	- 4	1.0	(7/)1
100	Discuss standard operations on Languages with example.	4	L2	COI
c F	Briefly explain hierarchy of languages with a diagram. For the following NDFSM, use ndfsmtodfsm to construct an equivalent DFSM. Begin by showing the value of eps(q) for each state	5 8	L2 L3	COI
d	Minimize the following DFSM.	8	L3	COI

Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

CSE

16/10/2020

CONTINUOUS INTERNAL EVALUATION- 1

PART B			
a State and prove pumping theorem for regular language.		L.2	CO2
b Convert the regular expression (0 U 1)*1(0 U 1) to FSM.		L3	CO2
 c Write Regular expressions for the following languages: i. L = {w ∈ {a, b}* : w has both aa and bb as substrings}. ii. L = {w : w mod 3=0 where w ∈ (a, b)*} iii. L = {aⁿb^m n>=4, m<=3} iv. L= L₁-L₂, where L₁= a*b*c* and L₂= c*b*a* 		L3	CO2
d Convert the following FSM to a regular expression.		L3	CO2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
OR			
a Consider the regular grammar below. S → aT, T → bT a aW W → aW ε Generate FSM and Obtain simplified Regular expression.	4	L3	CO2
b Prove that the language $L=\{0^n1^n\mid n\geq 0\}$ is not regular using pumping theorem.	5	L3	CO2
c Write Regular expressions for the following languages:	8	L3	CO2
 i. L = {w ∈ {0, 1}* : w corresponds to the binary encoding, without leading 0's, of natural numbers that are evenly divisible by 4}. ii. L = {w ∈ {0, 1}* : every odd length string in L begins with 11}. iii. L = {w ∈ {0-9}* : w represents the decimal encoding of an odd natural number without leading 0's. iv. L= {w ∈ {a, b}* : w contains exactly two occurrences of the 			
substring aa}.			
d Convert the following FSM to a regular expression.	8	L3	CO2

Prepared by: Prof. Bhanupriya M P

Huyusuad 10/10/2020