Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi CRM08 Rev 1.10 CSE 16/10/2020 ## CONTINUOUS INTERNAL EVALUATION- 1 | Dept: CSE | Sem / Div: 5th A and B | Sub: Automata Theory and
Computability | S Code: 18CS54 | |------------------|------------------------|---|----------------| | Date: 20/10/2020 | Time: 2:30 - 4:00 PM | Max Marks: 50 | Elective: N | | Q
N | Questions | Marks | RBT | COs | |---|--|-------|----------|-------| | | PART A | | | | | 1 a Explain with example, i. Alphabet ii. Language iii. Functions on string | | 4 | L2 | COI | | | Define a Moore Machine and a Mealy Machine. Give an example or each. | 5 | L2 | COI | | c Design a DFSM for the following languages. i. L = { w ∈ {a, b}*: where w mod 3 < w mod 2 }. Write configurations for "baabab" ii. L={w ∈ {a, b}*: w contains an odd number of a's and an odd number of b's}. Write the configurations for "aabbab" | | 8 | L3 | COI | | dΙ | Design a NDFSM for the following languages: i. L={ ab, abc}* ii. L={ abab ⁿ n>=0} or { aba ⁿ n>=0} | 8 | L3 | COI | |) o T | OR | - 4 | 1.0 | (7/)1 | | 100 | Discuss standard operations on Languages with example. | 4 | L2 | COI | | c F | Briefly explain hierarchy of languages with a diagram. For the following NDFSM, use ndfsmtodfsm to construct an equivalent DFSM. Begin by showing the value of eps(q) for each state | 5 8 | L2
L3 | COI | | d | Minimize the following DFSM. | 8 | L3 | COI | ## Vivekananda College of Engineering & Technology,Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi CRM08 Rev 1.10 CSE 16/10/2020 ## CONTINUOUS INTERNAL EVALUATION- 1 | PART B | | | | |---|---|-----|-----| | a State and prove pumping theorem for regular language. | | L.2 | CO2 | | b Convert the regular expression (0 U 1)*1(0 U 1) to FSM. | | L3 | CO2 | | c Write Regular expressions for the following languages: i. L = {w ∈ {a, b}* : w has both aa and bb as substrings}. ii. L = {w : w mod 3=0 where w ∈ (a, b)*} iii. L = {aⁿb^m n>=4, m<=3} iv. L= L₁-L₂, where L₁= a*b*c* and L₂= c*b*a* | | L3 | CO2 | | d Convert the following FSM to a regular expression. | | L3 | CO2 | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | OR | | | | | a Consider the regular grammar below. S → aT, T → bT a aW W → aW ε Generate FSM and Obtain simplified Regular expression. | 4 | L3 | CO2 | | b Prove that the language $L=\{0^n1^n\mid n\geq 0\}$ is not regular using pumping theorem. | 5 | L3 | CO2 | | c Write Regular expressions for the following languages: | 8 | L3 | CO2 | | i. L = {w ∈ {0, 1}* : w corresponds to the binary encoding, without leading 0's, of natural numbers that are evenly divisible by 4}. ii. L = {w ∈ {0, 1}* : every odd length string in L begins with 11}. iii. L = {w ∈ {0-9}* : w represents the decimal encoding of an odd natural number without leading 0's. iv. L= {w ∈ {a, b}* : w contains exactly two occurrences of the | | | | | substring aa}. | | | | | d Convert the following FSM to a regular expression. | 8 | L3 | CO2 | Prepared by: Prof. Bhanupriya M P Huyusuad 10/10/2020